Российские ученые нашли путь к созданию электроники нового типа — Свежие новости

Российские ученые нашли путь к созданию электроники нового типа

Основой всей современной полупроводниковой электроники является так называемый p-n-переход — область соприкосновения двух полупроводников с разными типами проводимости. Для электронов такой переход является энергетическим барьером. Наличие ступенчатого барьера для электронов в p-n-переходе определяет его главную функцию в электронике: этот переход является односторонним, ток в нем может течь лишь при одной полярности поданного напряжения.

В 1960-е годы обнаружилось, что p-n-переходы могут проводить ток и благодаря эффекту квантового туннелирования — «просачиванию» электронов под энергетическим барьером. Подобным приборам — туннельным диодам — нашлось применение в электронике с низким энергопотреблением.

Другим важным направлением в электронике стало повышение скорости срабатывания электронных приборов. Здесь не обойтись без новых материалов, где электроны на своем пути не встречают препятствий. Одним из таких материалов оказался двухслойный графен — двумерная модификация углерода, образованная двумя близко расположенными слоями графена.

Но механизм протекания тока в p-n-переходах на основе двухслойного графена долгое время оставался непонятым. Ученые из лаборатории оптоэлектроники двумерных материалов Центра фотоники и двумерных материалов МФТИ смогли ответить на этот вопрос. В своих экспериментах они пришли к выводу о доминирующем квантовом туннельном типе проводимости в этом материале.

«

«Обнаруженная нами ситуация оказывается очень перспективной для электроники. Во-первых, мы имеем высокую электронную подвижность в графене, что дает возможность создания быстрых полупроводниковых приборов. Во-вторых, мы имеем туннельный характер транспорта, а это дает возможность управлять током при малых напряжениях, то есть энергоэффективность. Подобной комбинации скорости и энергоэффективности было невозможно достичь в электронике на основе „классических“ полупроводниковых материалов», — отметил заведующий лабораторией оптоэлектроники двумерных материалов МФТИ Дмитрий Свинцов.

По мнению авторов работы, обнаруженный ими эффект в числе прочего важен для внедрения двухслойного графена в цифровую электронику: туннельный эффект в двухслойном графене позволит «чувствовать» не только излучения, но и следовые количества химических и биологических соединений, то есть выступать в роли чувствительного химического и биологического сенсора.

Работа выполнена при грантовой поддержке Российского научного фонда и Минобрнауки РФ. Результаты исследования опубликованы в ведущем профильном международном научном журнале Nano Letters.

Предыдущая новость Так выглядит Huawei P60. Новый флагман Huawei впервые показали на официальном тизере
Следующая новость Samsung Galaxy Tab S9 Ultra окажется суперпланшетом: он получит разогнанную платформу Snapdragon 8 Gen 2 и аккумулятор огромной емкости

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *